31 July 2011

Nuitka Release 0.3.10

This is to inform you about the new stable release of Nuitka. It is the extremely compatible Python compiler, “download now”.

This new release is major milestone 2 work, enhancing practically all areas of Nuitka. The focus was roundup and breaking new grounds with structural optimization enhancements.

Bug Fixes

  • Exceptions now correctly stack.

    When you catch an exception, there always was the exception set, but calling a new function, and it catching the exception, the values of sys.exc_info() didn’t get reset after the function returned.

    This was a small difference (of which there are nearly none left now) but one that might effect existing code, which affects code that calls functions in exception handling to check something about it.

    So it’s good this is resolved now too. Also because it is difficult to understand, and now it’s just like CPython behaves, which means that we don’t have to document anything at all about it.

  • Using exec in generator functions got fixed up. I realized that this wouldn’t work while working on other things. It’s obscure yes, but it ought to work.

  • Lambda generator functions can now be nested and in generator functions. There were some problems here with the allocation of closure variables that got resolved.

  • List contractions could not be returned by lambda functions. Also a closure issue.

  • When using a mapping for globals to exec or eval that had a side effect on lookup, it was evident that the lookup was made twice. Correcting this also improves the performance for the normal case.

Optimization

  • Statically raised as well as predicted exceptions are propagated upwards, leading to code and block removal where possible, while maintaining the side effects.

    This is brand new and doesn’t do everything possible yet. Most notable, the matching of raised exception to handlers is not yet performed.

  • Built-in exception name references and creation of instances of them are now optimized as well, which leads to faster exception raising/catching for these cases.

  • More kinds of calls to built-ins are handled, positional parameters are checked and more built-ins are covered.

    Notable is that now checks are performed if you didn’t potentially overload e.g. the len with your own version in the module. Locally it was always detected already. So it’s now also safe.

  • All operations and comparisons are now simulated if possible and replaced with their result.

  • In the case of predictable true or false conditions, not taken branches are removed.

  • Empty branches are now removed from most constructs, leading to sometimes cleaner code generated.

Cleanups

  • Removed the lambda body node and replaced it with function body. This is a great win for the split into body and builder. Regular functions and lambda functions now only differ in how the created body is used.

  • Large cleanup of the operation/comparison code. There is now only use of a simulator function, which exists for every operator and comparison. This one is then used in a prediction call, shared with the built-in predictions.

  • Added a Tracing module to avoid future imports of print_function, which annoyed me many times by causing syntax failures for when I quickly added a print statement, not noting it must have the braces.

  • PyLint is happier than ever.

New Tests

  • Enhanced OverflowFunctions test to cover even deeper nesting of overflow functions taking closure from each level. While it’s not yet working, this makes clearer what will be needed. Even if this code is obscure, I would like to be that correct here.

  • Made Operators test to cover the `` operator as well.

  • Added to ListContractions the case where a contraction is returned by a lambda function, but still needs to leak its loop variable.

  • Enhanced GeneratorExpressions test to cover lambda generators, which is really crazy code:

    def y():
        yield ((yield 1), (yield 2))
    
  • Added to ExecEval a case where the exec is inside a generator, to cover that too.

  • Activated the testing of sys.exc_info() in ExceptionRaising test.

    This was previously commented out, and now I added stuff to illustrate all of the behavior of CPython there.

  • Enhanced ComparisonChains test to demonstrate that the order of evaluations is done right and that side effects are maintained.

  • Added BuiltinOverload test to show that overloaded built-ins are actually called and not the optimized version. So code like this has to print 2 lines:

    from __builtin__ import len as _len
    
    
    def len(x):
        print x
    
    
    return _len(x)
    
    print len(range(9))
    

Organizational

  • Changed “README.txt” to no longer say that “Scons” is a requirement. Now that it’s included (patched up to work with ctypes on Windows), we don’t have to say that anymore.

  • Documented the status of optimization and added some more ideas.

  • There is now an option to dump the node tree after optimization as XML. Not currently use, but is for regression testing, to identify where new optimization and changes have an impact. This make it more feasible to be sure that Nuitka is only becoming better.

  • Executable with Python3 again, although it won’t do anything, the necessary code changes were done.

Summary

It’s nice to see, that I some long standing issues were resolved, and that structural optimization has become almost a reality.

The difficult parts of exception propagation are all in place, now it’s only details. With that we can eliminate and predict even more of the stupid code of “pybench” at compile time, achieving more infinite speedups.